Article ID Journal Published Year Pages File Type
58463 Catalysis Today 2007 7 Pages PDF
Abstract

Mechanistic and kinetic aspects of the direct decomposition of N2O over steam-activated Fe-silicalite were investigated by transient experiments in vacuum (N2O peak pressure of ca. 10 Pa) using the temporal analysis of products (TAP) reactor in the temperature range of 773–848 K. The transient responses of N2O, N2, and O2 obtained upon N2O decomposition were fitted to different micro-kinetic models. Through model discrimination it was concluded that both free iron sites and iron sites with adsorbed mono-atomic oxygen (*O) species are active for N2O decomposition. Oxygen formation occurs via decomposition of bi-atomic (*O2) oxygen species adsorbed over the iron site. This bi-atomic oxygen species originates from another bi-atomic oxygen species (O*O), which is initially formed via interaction of N2O with iron site possessing mono-atomic oxygen species (*O). Based on our modeling, the recombination of two mono-atomic oxygen (*O) species or direct O2 formation via reaction of N2O with *O can be excluded as potential reaction pathways yielding gas-phase O2. The simulation results predict that the overall rate of N2O decomposition is controlled by regeneration of free iron sites via a multi-step oxygen formation at least below 700 K.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, ,