Article ID Journal Published Year Pages File Type
5857982 Reproductive Toxicology 2016 9 Pages PDF
Abstract
Mesenchymal cell proliferation is one of the processes in shelf outgrowth. Both all-trans retinoic acid (atRA) and transforming growth factor-β3 (TGF-β3) play an important role in mouse embryonic palate mesenchymal (MEPM) cell proliferation. The cellular effects of TGF-β are mediated by Smad-dependent or Smad-independent pathways. In the present study, we demonstrate that atRA promotes TGF-β3 promoter demethylation and protein expression, but can cause depression of mesenchymal cell proliferation, especially at embryonic day 14 (E14). Moreover, the inhibition of MEPM cell proliferation by atRA results in the downregulation of Smad signaling mediated by transforming growth interacting factor (TGIF). We speculate that the effects of atRA on MEPM cell proliferation may be mediated by Smad pathways, which are regulated by TGIF but are not related to TGF-β3 expression. Finally, the cellular effects of TGF-β3 on MEPM cell proliferation may be mediated by Smad-independent pathways.
Related Topics
Life Sciences Environmental Science Health, Toxicology and Mutagenesis
Authors
, , , , , , , , , ,