Article ID Journal Published Year Pages File Type
5858950 Toxicology 2016 10 Pages PDF
Abstract

Quantum dots (QDs) are nano-sized semiconductors. Previously, intratracheal instillation of QD705s induces persistent inflammation and remodeling in the mouse lung. Expression of interferon beta (IFN-β), involved in tissue remodeling, was induced in the mouse lung. The objective of this study was to understand the mechanism of QD705 induced interferon beta (IFN-β) expression. QD705-COOH and QD705-PEG increased IFN-β and IP-10 mRNA levels during day1 to 90 post-exposure in mouse lungs. QD705-COOH increased IFN-β expression via Toll/interleukin-1 receptor domain-containing adapter protein (TRIF) dependent Toll-like receptor (TLR) signaling pathways in macrophages RAW264.7. Silencing TRIF expression with siRNA or co-treatment with a TRIF inhibitor tremendously abolished QD705s-induced IFN-β expression. Co-treatment with a TLR4 inhibitor completely prevented IFN-β induction by QD705-COOH. QD705-COOH readily entered cells, and co-treatment with either inhibitors of endocytosis or intracellular TLRs prevented IFN-β induction. Thus, activation of the TRIF dependent TLRs pathway by promoting endocytosis of TLR4 is one of the mechanisms for immunomodulatory effects of nanoparticles.

Related Topics
Life Sciences Environmental Science Health, Toxicology and Mutagenesis
Authors
, , , ,