Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5860401 | Toxicology Letters | 2013 | 7 Pages |
Abstract
Phosphate flame retardants and plasticizers (PFRs) are additives used in a wide range of polymers. Important representatives, such as tris(2-butoxyethyl) phosphate (TBOEP), triphenyl phosphate (TPHP), tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCIPP), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), have been found in the indoor environment at high levels. Biotransformation of these PFRs needs to be investigated because it can be a major determinant of their bioavailability and toxicity in humans. TBOEP, TPHP, TCEP, TCIPP and TDCIPP were incubated with human liver S9 fraction and microsomes. Supernatants were analyzed using a liquid chromatography coupled to a quadrupole-time-of-flight mass spectrometer. Chromatograms were scanned for the presence of Phase-I and Phase-II metabolites and tentatively identified based on mass accuracy of the molecular formula, isotopic pattern, and MS/MS spectra. The two major metabolites of TBOEP were products of O-dealkylation and of hydroxylation, respectively. TPHP was mainly transformed to its diester metabolite by O-dearylation and to a hydroxylated metabolite. TCEP was poorly metabolized into its diester and a product of oxidative dehalogenation. The major metabolite of TCIPP was a product of oxidative dehalogenation. TDCIPP was mainly transformed into its diester and a glutathione S-conjugate. The metabolites identified in the present study are candidate biomarkers for future human biomonitoring studies.
Keywords
Related Topics
Life Sciences
Environmental Science
Health, Toxicology and Mutagenesis
Authors
Nele Van den Eede, Walid Maho, Claudio Erratico, Hugo Neels, Adrian Covaci,