Article ID Journal Published Year Pages File Type
5860405 Toxicology Letters 2013 10 Pages PDF
Abstract
Nickel compounds have been found to be carcinogenic based upon epidemiological, animal and cell culture studies. Previous studies suggest that epigenetic mechanisms play a role in Nickel-induced carcinogenesis such as DNA methylation and histone modification. In this study, we investigated the role of microRNAs (miRNAs) in nickel-induced carcinogenesis. The expression of several miRNAs which may function as tumor suppressor genes revealed a strong downregulation of miR-203 in Ni3S2-transformed 16HBE cells (NSTCs). Meanwhile, we observed hypermethylation of CpGs in miR-203 promoter and first exon area, and proved that the hyper-methylated miR-203 was involved in the Nickel-induced tumorigenesis. Moreover, we identified that miR-203 may suppress the tumorigenesis at least in part through negatively regulating its target gene ABL1. Our findings indicate that DNA methylation-associated silencing of tumor suppressor miRNAs contributes to the development of Nickel-induced cancer.
Related Topics
Life Sciences Environmental Science Health, Toxicology and Mutagenesis
Authors
, , , , , , , , , ,