Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5860420 | Toxicology Letters | 2014 | 5 Pages |
Abstract
Glucocorticoids (GCs) are widely used to treat inflammatory diseases and cancers. A multitude of undesired side effects have been reported in GC-treated patients including decreased linear bone growth. We have previously reported that GCs activate the caspase cascade and trigger Bax-mediated mitochondrial apoptosis in growth plate chondrocytes causing growth retardation in young mice. To further explore the role of mitochondrial apoptosis in GC-induced bone growth retardation, a number of pro- and anti-apoptotic proteins were studied in ex vivo cultures of human growth plate cartilage and human HCS-2/8 proliferative chondrocytes exposed to dexamethasone. Dexamethasone was found to increase the pro-apoptotic proteins Bcl-xS, Bad, and Bak as well as the proteolysis of Bid. Anti-Bid small interfering RNA partially rescued the chondrocytes from dexamethasone-induced apoptosis. Taken together, our data suggest that GC treatment differentially regulates Bcl-2 family member proteins to facilitate mitochondrial apoptosis in proliferative chondrocytes thereby contributing to GC-induced bone growth impairment. Prevention of this imbalance between pro- and anti-apoptotic Bcl-2 family proteins may provide a new strategy to protect from adverse effects of GCs on bone growth.
Keywords
Related Topics
Life Sciences
Environmental Science
Health, Toxicology and Mutagenesis
Authors
Farasat Zaman, Dionisios Chrysis, Kirsten Huntjens, Andrei Chagin, Masaharu Takigawa, Bengt Fadeel, Lars Sävendahl,