Article ID Journal Published Year Pages File Type
5861326 Toxicology in Vitro 2015 13 Pages PDF
Abstract

•We confirm the central role of ROS in Bis-GMA-induced cytotoxicity.•Bis-GMA can induce mitochondrial membrane potential depletion.•Bis-GMA can induce the inhibition of the PI3K/Akt pathway.•We propose NAC as a promising agent to counteract Bis-GMA-induced cytotoxicity.

Bisphenol-A-glycidyl methacrylate (Bis-GMA) released from dental resin materials causes various toxic effects on gingival epithelium. Thus the underlying mechanisms of its cytotoxicity should be elucidated for safety use. One potential cause of cell damage is the generation of reactive oxygen species (ROS) beyond the capacity of a balanced redox regulation. In this study, we found that exposure of human oral keratinocytes (HOKs) to Bis-GMA caused apoptosis and G1/S cell cycle arrest in parallel with an increased ROS level. Moreover, Bis-GMA induced a depletion of mitochondrial membrane potential, an increase in the Bax/Bcl-2 ratio, an activation of caspase-3 and altered expressions of cell cycle-related proteins (p21, PCNA, cyclinD1). Furthermore, the co-treatment of the ROS scavenger N-acetyl cysteine (NAC) obviously attenuated Bis-GMA-induced toxicity. Here we also evaluated the effects of Bis-GMA on the ROS-related PI3k/Akt pathway. We found that Bis-GMA inhibited the phosphorylation of Akt, whereas the amount of phosphorylated Akt was reverted to the control level in the presence of NAC. Our findings suggested that the toxic effects of Bis-GMA were related to ROS production and the antioxidant NAC effectively reduced Bis-GMA-mediated cytotoxicity.

Related Topics
Life Sciences Environmental Science Health, Toxicology and Mutagenesis
Authors
, , , , , ,