Article ID Journal Published Year Pages File Type
5862812 Toxicology in Vitro 2013 7 Pages PDF
Abstract

Glyphosate, a common herbicide, is not toxic under normal exposure circumstances. However, this chemical, when combined with a surfactant, is cytotoxic. In this study, the mechanism of the additive effect of glyphosate and TN-20, a common surfactant in glyphosate herbicides, was investigated. After exposure of rat H9c2 cells to glyphosate and TN-20 mixtures, following assays were performed: flow cytometry to determine the proportion of cells that underwent apoptosis and necrosis; western blotting to determine expression of mitochondrial proteins (Bcl-2 and Bax); immunological methods to evaluate translocation of cytochrome C; luminometric measurements to determine activity of caspases 3/7 and 9; and tetramethyl rhodamine methyl ester assay to measure mitochondrial membrane potentials. Bcl-1 intensity decreased while Bax intensity increased with exposure to increasing TN-20 and/or glyphosate concentrations. Caspase activity increased and mitochondrial membrane potential decreased only when the cells were exposed to a mixture of both TN-20 and glyphosate, but not after exposure to either one of these compounds. The results support the possibility that mixtures of glyphosate and TN-20 aggravate mitochondrial damage and induce apoptosis and necrosis. Throughout this process, TN-20 seems to disrupt the integrity of the cellular barrier to glyphosate uptake, promoting glyphosate-mediated toxicity.

► TN-20 seems to disrupt the integrity of the cellular barrier to glyphosate uptake. ► The mixture decrease Bcl-1 expression, while increase Bax expression. ► The mixture caused early release of cytochrome C and increased caspases activity. ► The mixtures accelerate mitochondrial damage-induced apoptosis and necrosis.

Related Topics
Life Sciences Environmental Science Health, Toxicology and Mutagenesis
Authors
, , , , ,