Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
58635 | Catalysis Today | 2006 | 5 Pages |
H3PMo12O40 catalyst was chemically immobilized on the surface modified CMK-3 (SM-CMK-3) support as a charge compensating component, by taking advantage of the overall negative charge of [PMo12O40]3−. The supported H3PMo12O40/SM-CMK-3 catalyst was characterized to have high surface area (≈1000 m2/g) and relatively large pore volume (0.83 cm3/g). The H3PMo12O40/SM-CMK-3 catalyst was applied to the vapor-phase 2-propanol conversion reaction. The H3PMo12O40/SM-CMK-3 catalyst exhibited higher 2-propanol conversion than the unsupported H3PMo12O40 and the impregnated H3PMo12O40 on CMK-3. Furthermore, the PMo12/SM-CMK-3 catalyst showed the enhanced oxidation activity (acetone formation) and the suppressed acid catalytic activity (propylene formation) compared to the other two catalysts. It is believed that [PMo12O40]3− species were chemically and finely immobilized on the SM-CMK-3 support as charge matching species, and thus, the PMo12/SM-CMK-3 catalyst showed an excellent oxidation activity.