Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5873310 | Journal of Stroke and Cerebrovascular Diseases | 2014 | 10 Pages |
Abstract
Telmisartan is an angiotensin receptor blocker with high lipid solubility, also called metabosartan, which exerts a special protective effect on both acute brain damage and chronic neurodegeneration. We examined the effects of telmisartan on oxidative stress by advanced glycation end product (AGE) and 4-hydroxynonenal (4-HNE) assays and the accumulation of phosphorylated α-synuclein (pSyn) in the brain of stroke-resistant spontaneously hypertensive rats (SHR-SR). At the age of 12 weeks, SHR-SR received transient middle cerebral artery occlusion (tMCAO) for 90 minutes and were divided into the following 3 groups: the vehicle group, the low-dose telmisartan group (.3 mg/kg/day), and the high-dose telmisartan group (3 mg/kg/day, postoperatively). Immunohistologic analysis was performed when rats were 6, 12, and 18 months old. AGE, 4-HNE, and pSyn-positive cells (per square millimeter) increased with age in the cerebral cortex and hippocampus of the vehicle group, in the low-dose telmisartan group, these parameters decreased without lowering blood pressure (BP), and in the high-dose telmisartan group, these parameters increased with lowering BP. The present study suggests that a persistent hypertension after tMCAO caused a progressive oxidative stress with the abnormal accumulation of pSyn, and that telmisartan reduced oxidative stress and the accumulation of pSyn without lowering BP (low dose) or improved these conditions with a reduction in BP (high dose) via its pleiotropic effects through a potential peroxisome proliferator-activated receptor gamma stimulation in the brain of SHR-SR.
Keywords
Related Topics
Health Sciences
Medicine and Dentistry
Clinical Neurology
Authors
Kota MD, Toru MD, PhD, Tomoko MD, PhD, Violeta MD, PhD, Yusuke BS, Nozomi MD, PhD, Kentaro MD, PhD, Koji MD, PhD,