Article ID Journal Published Year Pages File Type
5874294 Journal of Stroke and Cerebrovascular Diseases 2016 8 Pages PDF
Abstract

IntroductionIt has been debated whether the penumbral pattern, as identified using multimodal imaging, is a specific marker of tissue viability in ischemic stroke. We assessed whether perfusion computed tomography (PCT) accurately identifies salvageable tissue and helps predict postreperfusion outcomes.MethodsA retrospective study of patients with anterior circulation stroke undergoing reperfusion therapies who had a PCT before treatment and an assessment of vessel recanalization post treatment was conducted. Tissue at risk was considered as that with reduced cerebral blood flow, whereas the infarct core was the region of reduced cerebral blood volume, the mismatch region being salvageable tissue. The volume of hypodensity in slices corresponding to perfusion acquisition cage in 24-hour computed tomography (partial lesion volume [PLV]) was measured. Outcome variables were the amount of preserved tissue, that is, the difference between volumes of tissue at risk and PLV expressed as a percentage, and the modified Rankin Scale (mRS) score at 3 months.ResultsPatients (n = 34) meeting the inclusion criteria were included. Vessel recanalization was associated with a larger amount of tissue at risk preserved from definite lesion (89% [interquartile range {IQR}: 76-94] versus 46% [IQR: 23-86], P < .005). The amount of preserved tissue correlated with clinical outcome at 24 hours: for each 10% of preserved tissue, the National Institutes of Health Stroke Scale score improved by 3 points (95% confidence interval [CI]: −4.9 to −.8, P = .007) and was the only predictor of independency (mRS score 0-2) following adjustment for covariates (odds ratio 1.15, 95% CI: 1.04-1.28, P = .005).ConclusionsPCT provides accurate markers of viability of tissue in acute ischemic stroke and could help predict the degree of improvement following reperfusion.

Related Topics
Health Sciences Medicine and Dentistry Clinical Neurology
Authors
, , , , , , , , , , , , ,