Article ID Journal Published Year Pages File Type
588310 Process Safety and Environmental Protection 2014 9 Pages PDF
Abstract

The fault detection of industrial processes is very important for increasing the safety, reliability and availability of the different components involved in the production scheme. In this paper, a fault detection (FD) method is developed for nonlinear systems. The main contribution consists in the design of this FD scheme through a combination of the Bayes theorem and a neural adaptive black-box identification for such systems. The performance of the proposed fault detection system has been tested on a real plant as a distillation column. The simplicity of the developed neural model of normal condition operation, under all regimes (i.e. steady-state and unsteady state), used in this case is realised by means of a NARX (Nonlinear Auto-Regressive with eXogenous input) model and by an experimental design. To show the effectiveness of proposed fault detection method, it was tested on a realistic fault of a distillation plant of laboratory scale.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Health and Safety
Authors
,