Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5889289 | Bone | 2015 | 11 Pages |
Abstract
BAPN treatment significantly reduced lysylpyridinoline, pyrrole, hydroxylysinorleucine, and total mature collagen cross-linking, resulting in decreased bone elastic modulus and increased yield strain despite a marginal increase in TMD. Exercise caused a shift toward pyridinoline cross-linking, with increased hydroxylysylpyridinoline and decreased pyrrole cross-linking resulting in total mature cross-linking and estimated tissue level mechanical properties matching sedentary control levels. Exercise superimposed on BAPN treatment increased total mature cross-linking from BAPN to control levels, but did so by increasing pyridinoline, not pyrrole, cross-links. Exercise also counteracted the BAPN effects on modulus and strain, without a change in TMD. Pyrrole cross-linking was the strongest correlate of modulus (r = 0.470, p < 0.01) and yield strain (r = â 0.467, p < 0.01). Cross-links with similar levels of telopeptide lysine hydroxylation to pyrrole (lysylpyridinoline and hydroxylysinorleucine) also correlated with modulus and strain to a lesser extent. In conclusion, exercise in growing mice promotes pyridinoline collagen cross-linking in bone, the resulting increase in total mature cross-linking is sufficient to counteract the mechanical effects of concurrent cross-link inhibition, and this responsiveness to loading is a potential means by which exercise might improve bone quality in diseased or otherwise compromised bone.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Developmental Biology
Authors
Erin M.B. McNerny, Joseph D. Gardinier, David H. Kohn,