Article ID Journal Published Year Pages File Type
5893351 Current Opinion in Genetics & Development 2014 6 Pages PDF
Abstract

Cancer tissues with lower global levels of histone acetylation display significantly increased rate of tumor recurrence or cancer-related mortality. The function global regulation of histone acetylation serves for the cell or how lower levels of histone acetylation may contribute to a more aggressive cancer phenotype has been unclear. Chromatin and histone modifications are currently thought to regulate only DNA-based processes. However, recent findings have revealed a novel function for global histone acetylation in direct regulation of cellular physiology. I will discuss how chromatin, by regulating the cellular flux of acetate, may integrate control of cellular physiologic state with gene expression and help explain the observations in cancer tissues.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Developmental Biology
Authors
,