Article ID Journal Published Year Pages File Type
5893751 Current Opinion in Genetics & Development 2012 8 Pages PDF
Abstract
Current fossil, embryological and genetic data shed light on the evolution of the gene regulatory network (GRN) governing bone formation. The key proteins and genes involved in skeletogenesis are well accepted. We discuss when these essential components of the GRN evolved and propose that the Runx genes, master regulators of skeletogenesis, functioned in early cartilages well before they were co-opted to function in the making of bone. Two rounds of whole genome duplication, together with additional tandem gene duplications, created a genetic substrate for segregation of one GRN into several networks regulating the related tissues of cartilage, bone, enamel, and dentin. During this segregation, Runx2 assumed its position at the top of the bone GRN, and Sox9 was excluded from bone, retaining its ancient role in cartilage.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Developmental Biology
Authors
, ,