Article ID Journal Published Year Pages File Type
58939 Chinese Journal of Catalysis 2015 9 Pages PDF
Abstract

Pd-based nanomaterials have been considered as an effective catalyst for formic acid electrooxidation reaction (FAOR). Herein, we reported two types of polyaniline (PANI)-promoted Pd catalysts. One was an nPANI/Pd electrocatalyst prepared by the electropolymerization of aniline and the electrodeposition of Pd. The other was a Pd/C/nPANI catalyst prepared by the direct electropolymerization of aniline on a commercial Pd/C catalyst. The results show that PANI alone has no catalytic activity for FAOR; however, PANI can exhibit a significant promoting effect to Pd. The current densities of FAOR on the Pd catalysts with a PANI coating show a significant increase compared with that of the Pd reference catalyst without PANI as a promoter. The promoting effects of PANI are strongly dependent on the electropolymerization potential cycles (n). The highest catalytic activities for FAOR of all the nPANI/Pd and Pd/C/nPANI catalysts were those of 15PANI/Pd and Pd/C/20PANI. The mass-specific activity (MSA) of Pd in 15PANI/Pd was 7.5 times that of the Pd catalyst, and the MSA and intrinsic activity of Pd/C/20PANI were 2.3 and 3.3 times that of the Pd/C catalyst, respectively. The enhanced performance of Pd catalysts is proposed as an electronic effect between Pd nanoparticles and PANI.

Graphical AbstractFor both nPANI/Pd and Pd/C/nPANI catalysts, polyaniline (PANI) shows significant promoting effect on Pd catalyst toward formic acid electrooxidation reaction.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , , , ,