Article ID Journal Published Year Pages File Type
5895337 Placenta 2013 10 Pages PDF
Abstract

IntroductionHuman endometrial stromal cells (ESCs) undergo differentiation during the decidualization process. Decidualization is characterized by their enhanced production of IGF binding protein-1 (IGFBP-1), prolactin (PRL), and the forkhead transcriptional factor FOXO1, and transformation into more rounded cells, during the secretory phase of the menstrual cycle and subsequent pregnancy. Protein kinase A (PKA)-mediated cAMP signaling is crucial for this process. The present study was undertaken to examine the involvement of a mediator of cAMP signaling, exchange protein directly activated by cAMP (Epac), in decidualization of cultured ESCs.ResultsTreatment of ESCs with the Epac-selective cAMP analog 8-CPT-2-OMe-cAMP (CPT) had no effect on IGFBP-1, PRL, and FOXO1 mRNA expression. However, CPT potentiated IGFBP-1 and PRL expression stimulated by the PKA-selective cAMP analog N6-Phe-cAMP (Phe) and activated Rap1, a downstream regulator of Epac signaling. Knock-down of Epac1, Epac2, or Rap1 significantly inhibited the Phe- or Phe/CPT-induced increase in IGFBP-1 and PRL expression, as well as Rap1 activation. Furthermore, CPT enhanced IGFBP-1 and PRL expression and the morphological differentiation induced by ovarian steroids, whereas Epac1, Epac2, or Rap1 knock-down suppressed these events.ConclusionThese data provide evidence for the involvement of the Epac/Rap1 signaling pathway in cAMP-mediated decidualization of human ESCs.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Developmental Biology
Authors
, , , , , , , , , , , , ,