Article ID Journal Published Year Pages File Type
5895957 Placenta 2010 7 Pages PDF
Abstract

IntroductionThe fetal membrane (FM) layers, amnion and choriodecidua, are frequently noted to have varying degrees of separation following delivery. FM layers normally separate prior to rupture during in vitro biomechanical testing. We hypothesized that the adherence between amnion and choriodecidua decreases prior to delivery resulting in separation of the FM layers and facilitating FM rupture.MethodsFM from 232 consecutively delivered patients were examined to determine the extent of spontaneous separation of the FM layers at delivery. Percent separation was determined by the weight of separated FM tissue divided by the total FM weight. Separately, the adherence between intact FM layers was determined. FM adherence was tested following term vaginal delivery (13), term unlabored cesarean section (10), and preterm delivery (6).ResultsSubjects enrolled in the two studies had similar demographic and clinical characteristics. FM separation was present in 92.1% of membranes. Only 4.3% of FM delivered following spontaneous rupture of the fetal membranes (SROM) had no detectable separation. 64.7% of FM had greater than 10% separation. FM from term vaginal deliveries had significantly more separation and were less adherent than FM of term unlabored, elective cesarean section (39.0 ± 34.4% vs 22.5 ± 30.9%, p = .046 and 0.041 ± 0.018 N/cm vs 0.048 ± 0.019 N/cm, p < .005). Preterm FM had less separation and were more adherent than term FM (9.95 ± 17.7% vs 37.5 ± 34.4% and 0.070 ± 0.040 N/cm vs 0.044 ± 0.020 N/cm; both p < .001).ConclusionsSeparation of the amnion from choriodecidua at delivery is almost universal. Increased separation is associated with decreased adherence as measured in vitro. Increased separation and decreased adherence are seen both with increasing gestation and with labor suggesting both biochemical and mechanical etiologies. The data are consistent with the hypothesis that FM layer separation is part of the FM weakening process during normal parturition.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Developmental Biology
Authors
, , , , , , , , , , , ,