Article ID Journal Published Year Pages File Type
58974 Chinese Journal of Catalysis 2015 6 Pages PDF
Abstract

We present a simple method to increase the efficiency of a direct ethanol fuel cell by a periodic modulation of the load (pulsed mode). The fuel cell was periodically short circuited with a resistor (1 Ω) for a few seconds (high load period) followed by a low load period of up to 100 s when the resistor was disconnected. The open circuit voltage (OCV) values before and after the short circuit of the cell showed an increase of up to 70 mV. The higher OCV was due to the oxidation and removal of strongly adsorbed CO during the electric short circuit when the electric potential of the anode was increased to be close to the cathode potential. The depoisoned anode surface was much more active directly after the short circuit. The slow decrease of the OCV observed after the short circuit was caused by the subsequent poisoning of the anode surface, which can be neutralized by another short circuit. In general, a stable increase in cell performance was obtained by repetition of the electric short circuit. The data showed that the pulse mode gave an increase in the power generated by the direct ethanol fuel cell by up to 51% and was 6% on average. It is anticipated that this mode of operation can be used also in different types of polymer electrolyte membrane fuel cells where CO poisoning is a problem, and after optimization of the parameters, a much higher gain in efficiency can be obtained.

Graphical AbstractA very simple method of increasing direct ethanol fuel cell efficiency by over 50%, and cell voltage by up to 70 mV, using periodic modulation of the load (shorting with a resistor) is presented and discussed.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, ,