Article ID Journal Published Year Pages File Type
5900947 General and Comparative Endocrinology 2015 7 Pages PDF
Abstract
The differential impact of stress on brain functions of males and females has been widely observed in vertebrates. Recent evidence suggests that stress-induced glucocorticoid signaling affects sexual differentiation and sex changes in teleost fish. These facts led us to postulate that there were sex differences in glucocorticoid signaling in the teleost brain that underlie some sex differences in their physiological and behavioral traits. Here we found sexually dimorphic expression of a glucocorticoid receptor gene (gr1) in the brain of medaka fish (Oryzias latipes), with females having greater expression in several preoptic and thalamic nuclei. Further, gr1 exhibits female-biased expression in neurons of the anterior parvocellular preoptic nucleus that produce the neuropeptides vasotocin and gonadotropin-releasing hormone 1 (these neuropeptides have been implicated in the regulation of neuroendocrine and behavioral functions). These findings suggest that glucocorticoids have a greater influence on physiology and behavior mediated by these neuropeptides in females than in males, which may contribute to sex differences in the brain's response to stress.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Endocrinology
Authors
, , , , ,