Article ID Journal Published Year Pages File Type
5900948 General and Comparative Endocrinology 2015 12 Pages PDF
Abstract
VEGFA is one of the most potent known inducers of angiogenesis. However, the function of angiogenic factors in the canine corpus luteum (CL) of pregnancy and in the pregnant uterus and placenta has not yet been elucidated. Therefore, here we investigated the expression and localization of VEGFA and its receptors (VEGFR1/FLT1 and VEGFR2/FLK1/KDR) in the canine CL and utero-placental compartments (ut-pl) throughout pregnancy until prepartum luteolysis. Antigestagen-mediated effects on expression of VEGF system in ut-pl were elucidated in mid-pregnant dogs. While displaying high individual variation, the luteal VEGFA was elevated during pre-implantation and post-implantation, followed by a decrease during mid-gestation, which was more pronounced at the mRNA level, and showed constant expression afterwards. Within the uterus, it increased following implantation and during mid-gestation in ut-pl compartments, but was downregulated at prepartum luteolysis. Luteal VEGFR1 expression resembled that of VEGFA; VEGFR2 remained unaffected throughout pregnancy. In ut-pl compartments, both receptors increased gradually towards mid-gestation; a prepartum decrease was observed for VEGFR1. Antigestagen-treatment resulted in decreased expression of ut-pl VEGFR1. In the CL, VEGFA stained in luteal cells. Uterine signals of VEGFA and its two receptors were observed in epithelial and vascular compartments, and in myometrium. In placental labyrinth, additionally, trophoblast stained positively. Luteal VEGFR1 was localized to the luteal cells and tunica media of blood vessels, whereas VEGFR2 stained only in capillary endothelial cells. The upregulation of luteal and the ut-pl VEGF system during early gestational stages supports the increased vascularization rate during this time. The diminishing effects of the prepartum endocrine milieu on VEGFA function seem to be more pronounced in the ut-pl units.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Endocrinology
Authors
, , , ,