Article ID Journal Published Year Pages File Type
5900950 General and Comparative Endocrinology 2015 14 Pages PDF
Abstract

•The first peptidome for a member of the arthropod subphylum Myriapoda is described.•Ninety-seven distinct mature Symphylella vulgaris neuropeptides were predicted.•The neuropeptidome of S. vulgaris includes members of 15 different peptide families.•An AST-C isoform lacking a disulfide bridge was discovered: TYWKQCAFNAVSRFamide.•A full-length, but truncated, SIFamide was predicted: PPFNGSIFamide.

Arthropods have contributed greatly to our understanding of peptidergic control of physiology and behavior, and being the largest and most diverse animal phylum, represent a model for investigating peptide hormone evolution. Surprisingly, one arthropod subphylum, the Myriapoda, is uninvestigated in terms of its peptide hormones. The public deposition of a transcriptome for Symphylella vulgaris, a pseudocentipede, provides a means for peptide discovery in myriapods. Here, in silico transcriptome mining was used to identify 47 S. vulgaris neuropeptide-encoding transcripts within this dataset. The identified transcripts allowed for the deduction of 31 unique pre/preprohormone sequences, with 97 distinct mature peptides predicted from the deduced proteins. The predicted S. vulgaris peptidome includes members of the adipokinetic hormone/red pigment concentrating hormone, adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin C (AST-C), allatotropin, CCHamide, crustacean cardioactive peptide, GSEFLamide, insulin-like peptide, intocin, proctolin, pyrokinin, short neuropeptide F, SIFamide and sulfakinin families. This is the first, and thus far only, peptidome predicted for a myriapod. Of particular note were a modified AST-C, TYWKQCAFNAVSRFamide, that lacks one of two cysteine residues (i.e. one at position 13) stereotypically present in members of this peptide family (and hence is missing the disulfide bridge that spans these residues) and a SIFamide, PPFNGSIFamide, that is truncated due to a lysine for arginine substitution in the dibasic residue pair commonly located at positions 3 and 4 of stereotypical full-length isoforms (e.g. the crustacean peptide GYRKPPFNGSIFamide). The peptides predicted here represent the only extant resource for initiating investigations of native peptidergic signaling in the Myriapoda.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Endocrinology