Article ID Journal Published Year Pages File Type
5901156 General and Comparative Endocrinology 2014 11 Pages PDF
Abstract
The aim of the current study was to phenotype fish metabolism and the transcriptionally-mediated response of hepatic mitochondria of gilthead sea bream to intermittent and repetitive environmental stressors: (i) changes in water temperature (T-ST), (ii) changes in water level and chasing (C-ST) and (iii) multiple sensory perception stressors (M-ST). Gene expression profiling was done using a quantitative PCR array of 60 mitochondria-related genes, selected as markers of transcriptional regulation, oxidative metabolism, respiration uncoupling, antioxidant defense, protein import/folding/assembly, and mitochondrial dynamics and apoptosis. The mitochondrial phenotype mirrored changes in fish performance, haematology and lactate production. T-ST especially up-regulated transcriptional factors (PGC1α, NRF1, NRF2), rate limiting enzymes of fatty acid β-oxidation (CPT1A) and tricarboxylic acid cycle (CS), membrane translocases (Tim/TOM complex) and molecular chaperones (mtHsp10, mtHsp60, mtHsp70) to improve the oxidative capacity in a milieu of a reduced feed intake and impaired haematology. The lack of mitochondrial response, increased production of lactate and negligible effects on growth performance in C-ST fish were mostly considered as a switch from aerobic to anaerobic metabolism. A strong down-regulation of PGC1α, NRF1, NRF2, CPT1A, CS and markers of mitochondrial dynamics and apoptosis (BAX, BCLX, MFN2, MIRO2) occurred in M-ST fish in association with the greatest circulating cortisol concentration and a reduced lactate production and feed efficiency, which represents a metabolic condition with the highest allostatic load score. These findings evidence a high mitochondrial plasticity against stress stimuli, providing new insights to define the threshold level of stress condition in fish.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Endocrinology
Authors
, , , , , , , ,