Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5905939 | Gene | 2014 | 6 Pages |
•Computational study addressing transcription factors regulating cervix cancer genes•Microarray gene expression and promoter analysis of curated cervix cancer genes•Consensus approach identified 12 TFs that regulate cervical cancer progression.•TF enrichment and oncomine suggested E2F family regulating cervical carcinogenesis.
Cervical cancer, the malignant neoplasm of the cervix uteri is the second most common cancer among women worldwide and the top-most cancer in India. Several factors are responsible for causing cervical cancer, which alter the expression of oncogenic genes resulting in up or down-regulation of gene expression and inactivation of tumor-suppressor genes/gene products. Gene expression is regulated by interactions between transcription factors (TFs) and specific regulatory elements in the promoter regions of target genes. Thus, it is important to decipher and analyze TFs that bind to regulatory regions of diseased genes and regulate their expression. In the present study, computational methods involving the combination of gene expression data from microarray experiments and promoter sequence analysis of a curated gene set involved in the cervical cancer causation have been utilized for identifying potential regulatory elements. Consensus predictions of two approaches led to the identification of twelve TFs that might be crucial to the regulation of cervical cancer progression. Subsequently, TF enrichment and oncomine expression analysis suggested that the transcription factor family E2F played an important role for the regulation of genes involve in cervical carcinogenesis. Our results suggest that E2F possesses diagnostic/prognostic value and can act as a potential drug target in cervical cancer.