Article ID Journal Published Year Pages File Type
591232 Advances in Colloid and Interface Science 2008 7 Pages PDF
Abstract

Basic research on confined foams now points to an interesting application, a kind of microfluidics which deals with the manipulation of closely packed droplets or bubbles flowing in channels. In such systems, the minimisation of interfacial energy leads to self-organised ordering which is tightly coupled to the channel geometry, hence providing efficient means of performing controlled topological operations on droplet and bubbles structures. We have called this discrete microfluidics, and have begun to explore its possibilities and principles. Apart from the fact that such systems provide powerful tools to study the flow of foams and emulsions on the scale of a few bubbles or droplets, they also carry the promise of versatile applications for Lab-on-a-Chip technologies. In these, discrete gas or liquid samples can be generated, processed, stored and analysed within a single handheld chip. Previous work on foams and emulsions in confined geometries provides a basis for this, and is being extended progressively by new experiments and appropriate dynamic models, such as the 2d Viscous Froth Model. The result should be a practical “design kit” for more complex networks to efficiently process discrete gas and fluid samples.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, ,