Article ID Journal Published Year Pages File Type
591290 Advances in Colloid and Interface Science 2006 11 Pages PDF
Abstract

With increasing interest in nanoscience and nanotechnology, the fundamental underpinnings of what makes materials strong and durable are under critical investigation. Recent findings suggest that when materials are reduced in extent to nanoscopic proportions, they exhibit enhanced strength, specifically in the form of higher moduli than are measured on macroscopic objects of the same composition. Force-deformation behavior of nanostructures subjected to concentrated loads, such as with atomic force microscopy (AFM), can yield detailed information and insight about their local mechanical properties. We review and evaluate the effectiveness of deformation and indentation tests used in determining the elastic modulus of nanobeams, nanosprings, thin films, biological samples, dendrimers, and fluid droplets. Obstacles yet remain in the determination of absolute, quantitative modulus data at the nanoscale. In spite of basic limitations, recent developments in advanced nanomechanical techniques will facilitate improvement in our understanding of material strength and aging from molecules and colloids to the macroscale.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, ,