Article ID Journal Published Year Pages File Type
5914248 Journal of Structural Biology 2014 17 Pages PDF
Abstract

Long-distance proton transfers by proton pumps occurs in discrete steps that may involve the direct participation of protein sidechains and water molecules, and coupling of protonation changes to structural rearrangements of the protein matrix. Here we explore the role of inter-helical hydrogen bonding in long-distance protein conformational coupling and dynamics of internal water molecules. From molecular dynamics simulations of wild type and nine different bacteriorhodopsin mutants we find that both intra- and inter-helical hydrogen bonds are important determinants of the local protein structure, dynamics, and water interactions. Based on molecular dynamics and bioinformatics analyses, we identify an aspartate/threonine inter-helical hydrogen-bonding motif involved in controlling the local conformational dynamics. Perturbation of inter-helical hydrogen bonds can couple to rapid changes in water dynamics.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Molecular Biology
Authors
, , ,