Article ID Journal Published Year Pages File Type
5917498 Molecular Immunology 2011 7 Pages PDF
Abstract

Complement plays a dual role in the progression of systemic lupus erythematosus since it has important protective functions, such as the clearance of immune complexes and apoptotic cells, but is also a mediator of renal inflammation. To investigate this balance in a clinically relevant setting, we investigated how targeted inhibition of all complement pathways vs. targeted inhibition of only the alternative pathway impacts immune and therapeutic outcomes in NZB/W F1 mice. Following onset of proteinuria, mice were injected twice weekly with CR2-fH (inhibits alternative pathway), CR2-Crry (inhibits all pathways at C3 activation step), sCR2 (C3d targeting vehicle) or saline. Sera were analyzed every 2 weeks for anti-dsDNA antibody levels, and urinary albumin excretion was determined. Kidneys were collected for histological evaluation at 32 weeks. Compared to the control group, all CR2-fH, CR2-Crry and sCR2 treated groups showed significantly reduced serum anti-dsDNA antibody levels and strong trends towards reduced glomerular IgG deposition levels. Glomerular C3 deposition levels were also significantly reduced in all three-treated groups. However, significant reductions of disease activity (albuminuria and glomerulonephritis) were only seen in the CR2-fH treated group. These data highlight the dual role played by complement in the pathogenesis of lupus, and demonstrate a benefit of selectively inhibiting the alternative complement pathway, presumably because of protective contributions from the classical and/or lectin pathways. The sCR2 targeting moiety appears to be contributing to therapeutic outcome via modulation of autoimmunity. Furthermore, these results are largely consistent with our previous data using the MRL/lpr lupus model, thus broadening the significance of these findings.

► Complement plays a dual role in the pathogenesis of lupus. ► Selectively inhibiting the alternative complement pathway provides optimal protection from lupus nephritis. ► sCR2, the targeting moiety used to target deliver inhibitors to sites of complement activation, contributes to therapeutic outcome via modulation of autoimmunity.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Molecular Biology