Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5918225 | Molecular Immunology | 2010 | 7 Pages |
Abstract
Plants of the genus Artemisia domestic in Northern and Central Europe, USA and parts of Asia are a major cause of allergic symptoms from late summer to autumn. Art v 1, the major mugwort pollen allergen appears as two-domain glycoprotein, consisting of an N-terminal defensin-like and a proline/hydroxyproline-rich C-terminal part. Patients sensitized to Art v 1 commonly display IgE antibodies against the cysteine-stabilized defensin fold. Site-directed mutagenesis of eight cysteines was used to disrupt disulfide bonds to generate molecules with altered IgE-binding capacity. Engineered constructs were expressed in E. coli and recombinant proteins were tested for their allergenic and T cell reactivity as well as for their physicochemical characteristics. Three cysteine variants (C22S, C47S, and C49S) exhibited extremely low IgE-binding activity in immunoblot and ELISA using sera from Art v 1-allergic patients. Mediator release assays using rat basophil leukemia cells showed that these variants displayed a 1Â ÃÂ 105-fold reduced allergenic potency as compared to wild-type protein. All variants were able to activate allergen-specific T cells in PBMC, as well as Art v 1-specific T cell lines and clones. Variant C49S displayed an increased hydrophobic surface potential which correlated with an advanced activation of allergen-specific T cells. The low allergenicity and high immunogenic activity of Art v 1 variant C49S renders the molecule an attractive candidate for hypoallergen-based immunotherapy of Artemisia pollen allergy.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Molecular Biology
Authors
Gabriele Gadermaier, Beatrice Jahn-Schmid, Lothar Vogel, Matthias Egger, Martin Himly, Peter Briza, Christof Ebner, Stefan Vieths, Barbara Bohle, Fatima Ferreira,