Article ID Journal Published Year Pages File Type
5923673 Physiology & Behavior 2015 7 Pages PDF
Abstract

•Endocrine and metabolic functions are affected in a rat model of anxiety disorder.•Anxiety may contribute to the development of metabolic diseases.•A rat model of anxiety disorder induces an increase in corticosterone serum levels.

The aim of this study was to characterize Carioca High-conditioned Freezing rats (CHF) regarding their endocrine and metabolic backgrounds. We found an increase in serum corticosterone (CTRL: 96.7 ± 21.65 vs CHF: 292.0 ± 40.71 ng/ml) and leptin (CTRL: 9.5 ± 1.51 vs CHF: 19.2 ± 4.32 ng/ml). Serum testosterone (CTRL: 3.3 ± 0.29 vs CHF: 2.0 ± 0.28 ng/ml) and T3 (CTRL: 52.4 ± 2.74 vs CHF: 42.7 ± 2.94 ng/dl) were decreased in the CHF group, but serum TSH and T4 were unaffected. Body weight and food intake were unchanged, nevertheless retroperitoneal fat (CTRL: 2.2 ± 0.24 vs CHF: 4.8 ± 0.64 g) and epididymal fat (CTRL: 2.6 ± 0.20 vs CHF: 4.8 ± 0.37 g) depot weights were around 2-fold higher in CHF animals. BAT weight was similar in both groups. Serum triglycerides (CTRL: 41.4 ± 6.03 vs CHF: 83.2 ± 17.09 mg/dl) and total cholesterol (CTRL: 181.6 ± 5.61 vs CHF: 226.4 ± 13.04 mg/dl) were higher in the CHF group. Fasting glycemia (CTRL: 68.7 ± 3.04 vs CHF: 82.3 ± 2.99 mg/dl) was also higher in the CHF group, however glucose tolerance test response and serum insulin levels were similar between the groups. Oxygen consumption (CTRL: 10.5 ± 0.40 vs CHF: 7.9 ± 0.58 VO2 ml/min/kg0.75) and BAT D2 activity (CTRL: 0.7 ± 0.17 vs CHF: 0.3 ± 0.04 fmol T4/min/mg ptn) were lower in the CHF group. Our data show that anxiety could impair endocrine and metabolic functions and may contribute to the development of metabolic diseases.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Physiology
Authors
, , , ,