Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5923900 | Physiology & Behavior | 2015 | 9 Pages |
Abstract
Serotonin (5-HT) is an important regulator of the mammalian circadian system, and has been implicated in modulating entrained and free-running rhythms, as well as photic and non-photic phase shifting. In general, 5-HT appears to oppose the actions of light on the circadian system of nocturnal rodents. As well, 5-HT mediates, at least in part, some non-photic responses. The 5-HT1A, 1B and 7 receptors regulate these acute responses to zeitgebers. 5-HT also regulates some entrained and free-running properties of the circadian clock. The receptors that contribute to these phenomena have not been fully examined. Here, we use 5-HT1A receptor knockout (KO) mice to examine the response of the mouse circadian system to a variety of lighting conditions, including a normal light-dark cycle (LD), T-cycles, phase advanced LD cycles, constant darkness (DD), constant light (LL) and a 6Â hour dark pulse starting at CT5. Relative to wildtype mice, the 5-HT1A receptor KO mice have lower levels of activity during the first 8Â h of the night/subjective night in LD and LL, later activity onsets on transient days during re-entrainment, shorter free-running periods in LL when housed with wheels, and smaller phase shifts to dark pulses. No differences were noted in activity levels during DD, alpha under any light condition, free-running period in DD, or phase angle of entrainment in LD. While the 5-HT1A receptor plays an important role in regulating photic and non-photic phase shifting, its contribution to entrained and free-running properties of the circadian clock is relatively minor.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Physiology
Authors
Victoria M. Smith, Ryan T. Jeffers, Brendan B. McAllister, Priyoneel Basu, Richard H. Dyck, Michael C. Antle,