Article ID Journal Published Year Pages File Type
5924389 Physiology & Behavior 2013 7 Pages PDF
Abstract

•Central GLP-1 plays an excitatory role in glucocorticoid secretion.•GLP-1 positive fibers innervate CRH neurons in the hypothalamic paraventricular nucleus.•Central infusions of GLP-1R agonists increase heart rate and blood pressure.•Bioavailability of central GLP-1 protein is reduced by exogenous or endogenous glucocorticoid secretion.

Glucagon-like peptide 1 (GLP-1) is best known as an incretin hormone, secreted from L cells in the intestine in response to nutrient ingestion to stimulate glucose-dependent insulin secretion. However, GLP-1 is also expressed in neurons, and plays a major role in regulation of homeostatic function within the central nervous system (CNS). This review summarizes our current state of knowledge on the role GLP-1 plays in neural coordination of the organismal stress response. In the brain, the primary locus of GLP-1 production is in the caudal nucleus of the solitary tract (NTS) and the ventrolateral medulla of the hindbrain. GLP-1 immunoreactive fibers directly innervate hypophysiotrophic corticotropin-releasing hormone (CRH) neurons in the hypothalamic paraventricular nucleus (PVN), placing GLP-1 in prime position to integrate hypothalamo-pituitary-adrenocortical responses. Exogenous central GLP-1 activates HPA axis stress responses, and responses to a variety of stressors can be blocked by a GLP-1 receptor (GLP-1R) antagonist, confirming an excitatory role in glucocorticoid secretion. In addition, central infusion of GLP-1R agonist increases heart rate and blood pressure, and activates hypothalamic and brainstem neurons innervating sympathetic preganglionic neurons, suggesting a sympathoexcitatory role of GLP-1 in the CNS. Bioavailability of preproglucagon (PPG) mRNA and GLP-1 peptide is reduced by exogenous or endogenous glucocorticoid secretion, perhaps as a mechanism to reduce GLP-1-mediated stress excitation. Altogether, the data suggest that GLP-1 plays a key role in activation of stress responses, which may be connected with its role in central regulation of energy homeostasis.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Physiology
Authors
, , ,