Article ID Journal Published Year Pages File Type
5926525 Respiratory Physiology & Neurobiology 2011 8 Pages PDF
Abstract
The integrity of the serotonin (5-HT) system is essential to normal respiratory and thermoregulatory control. Male and female transgenic mice lacking central 5-HT neurons (Lmx1bf/f/p mice) show a 50% reduction in the hypercapnic ventilatory response and insufficient heat generation when cooled (Hodges and Richerson, 2008a, Hodges et al., 2008b). Lmx1bf/f/p mice also show reduced body temperatures (Tbody) and O2 consumption V˙O2, and breathe less at rest and during hypoxia and hypercapnia when measured below thermoneutrality (24 °C), suggesting a role for 5-HT neurons in integrating ventilatory, thermal and metabolic control. Here, the hypothesis that Pet-1 null mice, which retain 30% of central 5-HT neurons, will demonstrate similar deficits in temperature and ventilatory control was tested. Pet-1 null mice had fewer medullary tryptophan hydroxylase-immunoreactive (TPH+) neurons compared to wild type (WT) mice, particularly in the midline raphé. Female (but not male) Pet-1 null mice had lower baseline ventilation (V˙E), breathing frequency (f), V˙O2 and Tbody relative to female WT mice (P < 0.05). In addition, V˙E and V˙E/V˙O2 were decreased in male and female Pet-1 null mice during hypoxia and hypercapnia (P < 0.05), but only male Pet-1 null mice showed a significant deficit in the hypercapnic ventilatory response when expressed as % of control (P < 0.05). Finally, male and female Pet-1 null mice showed significant decreases in Tbody when externally cooled to 4 °C. These data demonstrate that a moderate loss of 5-HT neurons leads to a modest attenuation of mechanisms defending body temperature, and that there are gender differences in the contributions of 5-HT neurons to ventilatory and thermoregulatory control.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Physiology
Authors
, , ,