Article ID Journal Published Year Pages File Type
59266 Chinese Journal of Catalysis 2015 7 Pages PDF
Abstract

Amorphous aluminophosphate (AlP) and metal-aluminophosphates (MAlPs, where M = 2.5 mol% Cu, Zn, Cr, Fe, Ce, or Zr) were prepared by coprecipitation method. Their surface properties and catalytic activity for the synthesis of jasminaldehyde through the aldol condensation of n-heptanal and benzaldehyde were investigated. The nitrogen adsorption-desorption isotherms showed that the microporosity exhibited by the aluminophosphate was changed to a mesoporous and macroporous structure which depended on the metal incorporated, with a concomitant change in the surface area. Temperature-programmed desorption of NH3 and CO2 revealed that the materials possessed both acidic and basic sites. The acidic strength of the material was either increased or decreased depending on the nature of the metal. The basicity was increased compared to AlP. All the materials were X-ray amorphous and powder X-ray diffraction studies indicated the absence of metal oxide phases. The Fourier transform infrared analysis confirmed the presence of phosphate groups and also the absence of any M-O moieties in the materials. The selected organic reaction occurred only in the presence of the AlP and MAlPs. The selectivity for the jasminaldehyde product was up to 75% with a yield of 65%. The best conversion of n-heptanal with a high selectivity to jasminaldehyde was obtained with FeAlP as the catalyst, and this material was characterized to have less weak acid sites and more basic sites.

Graphical AbstractAmorphous aluminophosphate and metal-aluminophosphates (metal = Cu, Zn, Cr, Fe, Ce, and Zr) were investigated for their surface and bulk properties, and as catalyst for the synthesis of jasminaldehyde through aldol condensation of n-heptanal and benzaldehyde without a solvent.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, ,