Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5933596 | The American Journal of Pathology | 2013 | 13 Pages |
Abstract
Malignant mesothelioma (MM) is a relatively rare but devastating tumor that is increasing worldwide. Yet, because of difficulties in early diagnosis and resistance to conventional therapies, MM remains a challenge for pathologists and clinicians to treat. In recent years, much has been revealed regarding the mechanisms of interactions of pathogenic fibers with mesothelial cells, crucial signaling pathways, and genetic and epigenetic events that may occur during the pathogenesis of these unusual, pleiomorphic tumors. These observations support a scenario whereby mesothelial cells undergo a series of chronic injury, inflammation, and proliferation in the long latency period of MM development that may be perpetuated by durable fibers, the tumor microenvironment, and inflammatory stimuli. One culprit in sustained inflammation is the activated inflammasome, a component of macrophages or mesothelial cells that leads to production of chemotactic, growth-promoting, and angiogenic cytokines. This information has been vital to designing novel therapeutic approaches for patients with MM that focus on immunotherapy, targeting growth factor receptors and pathways, overcoming resistance to apoptosis, and modifying epigenetic changes.
Related Topics
Health Sciences
Medicine and Dentistry
Cardiology and Cardiovascular Medicine
Authors
Brooke T. Mossman, Arti Shukla, Nicholas H. Heintz, Claire F. Verschraegen, Anish Thomas, Raffit Hassan,