Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5933888 | The American Journal of Pathology | 2013 | 15 Pages |
Abstract
Fibrosis is a deleterious consequence of chronic inflammation in a number of human pathologies ultimately leading to organ dysfunction and failure. Two growth factors that are important in blood vessel physiology and tissue fibrosis, platelet-derived growth factor (PDGF)-B and transforming growth factor (TGF)-β1, were investigated. Adenoviral vectors were used to induce transient overexpression of these growth factors in mouse skin. Changes in tissue structure and protein and mRNA expressions were investigated. Both PDGF-B and TGF-β1 could initiate but neither could sustain angiogenesis. Instead, vascular regression was observed. Overexpression of both TGF-β1 and PDGF-B led to a marked macrophage influx and an expansion of the connective tissue cell population. Over time, this effect was sustained in mice treated with TGF-β1, whereas it was partially reversible in mice treated with PDGF-B. On the basis of structure and expression of phenotypical markers, the emerging connective tissue cell population may originate from microvascular pericytes. TGF-β1 induced expansion of connective tissue cells with a myofibroblast phenotype, whereas PDGF-B induced a fibroblast phenotype negative for α-smooth muscle actin. TGF-β1 and PDGF-B overexpressions mediated distinct effects on mRNA transcript levels of fibrillar procollagens, their modifying enzymes, small leucin-rich repeat proteoglycans, and matricellular proteins affecting both the composition and the quantity of the extracellular matrix. This study offers new insight into the effects of PDGF-B and TGF-β1 on the vasculature and connective tissue in vivo.
Related Topics
Health Sciences
Medicine and Dentistry
Cardiology and Cardiovascular Medicine
Authors
Alejandro Rodriguez, Tomas Friman, Marcin Kowanetz, Tijs van Wieringen, Renata Gustafsson, Christian Sundberg,