Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5934354 | The American Journal of Pathology | 2012 | 8 Pages |
Abstract
The aberrant expression of microRNA-155 (miR-155), which has emerged as having a significant impact on the biological characteristics of lymphocytes, plays important roles in B-cell malignancies, such as diffuse large B-cell lymphoma (DLBCL). DLBCL is the most common non-Hodgkin's lymphoma in the adult population, accounting for approximately 40% of newly diagnosed non-Hodgkin's lymphoma cases globally. To determine the specific function of miR-155, a quantitative proteomics approach was applied to examine the inhibitory effects of miR-155 on protein synthesis in DLBCL cells. PIK3R1 (p85α), a negative regulator of the phosphatidylinositol 3-kinase (PI3K)-AKT pathway, was identified as a direct target of miR-155. A luciferase reporter was repressed through the direct interaction of miR-155 and the p85α 3â²-untranslated region, and overexpression of miR-155 down-regulated both the transcription and translation of p85α. The PI3K-AKT signaling pathway was highly activated by the sustained overexpression of miR-155 in DHL16 cells, whereas knockdown of miR-155 in OCI-Ly3 cells diminished AKT activity. Taken together, our results reveal a novel target involved in miR-155 biological characteristics and provide a molecular link between the overexpression of miR-155 and the activation of PI3K-AKT in DLBCL.
Related Topics
Health Sciences
Medicine and Dentistry
Cardiology and Cardiovascular Medicine
Authors
Xin Huang, Yulei Shen, Miao Liu, Chengfeng Bi, Chunsun Jiang, Javeed Iqbal, Timothy W. McKeithan, Wing C. Chan, Shi-Jian Ding, Kai Fu,