Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5935068 | The American Journal of Pathology | 2012 | 12 Pages |
Abstract
Uncontrolled increases of matrix metalloproteinase-9 (MMP-9) activity have been causally linked to epithelial barrier disruption and severe symptoms of inflammatory diseases such as dry eye (DE). The data presented here show that the anti-inflammatory, cytoprotective intracellular and extracellular chaperone protein clusterin (CLU) interacts with MMP-9 both inside and outside epithelial cells. CLU bound very strongly to active MMP-9, with an affinity constant KD of 2.63 nmol/L. Unexpectedly, CLU had a much higher affinity for pro-MMP-9 than for active MMP-9 or pro-MMP-2, requiring the N-terminal propeptide domain of pro-MMP-9. The significance of the interaction between CLU and MMP-9 was demonstrated by the observation that CLU prevents stress-induced MMP-9 aggregation and inhibits MMP-9 enzymatic activity. Furthermore, CLU inhibited MMP-9-mediated disintegration of the tight junction structure formed between human epithelial cells. Additionally, CLU inhibited enzymatic activities of MMP-2, MMP-3, and MMP-7. Treatment with proinflammatory cytokines, which are known to increase MMP-9 transcription under inflammatory conditions, reduced the expression of CLU in human epithelial cells. Similarly, in a mouse model of human DE, inflammatory stress depleted CLU in the ocular surface epithelium but allowed MMP-9 to prevail therein. The present results thus provide novel insights into previously unrecognized mechanisms by which CLU maintains fluid-epithelial interface homeostasis, thereby preventing the onset of inflammatory conditions, especially where MMP-9 is actively involved.
Related Topics
Health Sciences
Medicine and Dentistry
Cardiology and Cardiovascular Medicine
Authors
Shinwu Jeong, Dolena R. Ledee, Gabriel M. Gordon, Tatsuo Itakura, Nitin Patel, Aaron Martin, M. Elizabeth Fini,