Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5936350 | The American Journal of Pathology | 2011 | 10 Pages |
We and others have shown that calcium-independent phospholipase A2 (iPLA2) is involved in epithelial ovarian cancer (EOC). Hence, we propose that iPLA2 is a potential effective and novel target for EOC. We tested this concept and found that bromoenol lactone (BEL), a selective inhibitor of iPLA2, significantly inhibited EOC metastatic tumor growth in mouse xenograft models using human SKOV3 and HEY ovarian cancer cells. Moreover, the combination of BEL with paclitaxel (PTX), one of the most commonly used therapeutic agents in EOC, almost completely blocked tumor development in the xenograft mouse model. BEL showed no detectable cytotoxic effects in mice. Another iPLA2 inhibitor, FKGK11, also inhibited tumor development in the xenograft mouse model, supporting that the major target of action was iPLA2. The additional effects of BEL with PTX in vivo likely stem from their distinct cellular effects. BEL and FKGK11 reduced adhesion, migration, and invasion of EOC cells in vitro; the reduced ability to adhere, migrate, and invade seems to increase the vulnerability of tumor cells to PTX. These results provide an important basis for the development of new treatment modalities for EOC.