Article ID Journal Published Year Pages File Type
5937383 The American Journal of Pathology 2009 10 Pages PDF
Abstract
Bone mass is maintained through the complementary activities of osteoblasts and osteoclasts; yet differentiation of either osteoblasts and osteoclasts engages the mitogen-activated protein kinase (MAPK) pathway. The MAPKs are negatively regulated by a family of dual-specificity phosphatases known as the MAPK phosphatases (MKPs). MKP-1 is a stress-responsive MKP that inactivates the MAPKs and plays a central role in macrophages; however, whether MKP-1 plays a role in the maintenance of bone mass has yet to be investigated. We show here, using a genetic approach, that mkp-1−/− female mice exhibited slightly reduced bone mass. We found that mkp-1+/+ and mkp-1−/− mice had equivalent levels of bone loss after ovariectomy despite mkp-1−/− mice having fewer osteoclasts, suggesting that mkp-1−/− osteoclasts are hyperactive. Indeed, deletion of MKP1 led to a profound activation of osteoclasts in vivo in response to local lipopolysaccharide (LPS) injection. These results suggest a role for MKP-1 in osteoclasts, which originate from the fusion of macrophages. In support of these observations, receptor activator for nuclear factor-κB ligand induced the expression for MKP-1, and osteoclasts derived from mkp-1−/− mice had increased resorptive activity. Finally, receptor activator of nuclear factor-κB ligand-induced p38 MAPK and c-Jun NH2-terminal kinase activities were enhanced in osteoclasts derived from mkp-1−/− mice. Taken together, these results show that MKP-1 plays a role in the maintenance of bone mass and does so by negatively regulating MAPK-dependent osteoclast signaling.
Related Topics
Health Sciences Medicine and Dentistry Cardiology and Cardiovascular Medicine
Authors
, , , , , , ,