Article ID Journal Published Year Pages File Type
5939229 The American Journal of Pathology 2011 13 Pages PDF
Abstract

Inflammatory mechanisms are proposed to play a significant role in the pathogenesis of pulmonary arterial hypertension (PAH). Previous studies have described PAH in fat-fed apolipoprotein E knockout (ApoE−/−) mice. We have reported that signaling in interleukin-1-receptor-knockout (IL-1R1−/−) mice leads to a reduction in diet-induced systemic atherosclerosis. We subsequently hypothesized that double-null (ApoE−/−/IL-1R1−/−) mice would show a reduced PAH phenotype compared with that of ApoE−/− mice. Male IL-1R1−/−, ApoE−/−, and ApoE−/−/IL-1R1−/− mice were fed regular chow or a high-fat diet (Paigen diet) for 8 weeks before phenotyping for PAH. No abnormal phenotype was observed in the IL-1R1−/− mice. Fat-fed ApoE−/− mice developed significantly increased right ventricular systolic pressure and substantial pulmonary vascular remodeling. Surprisingly, ApoE−/−/IL-1R1−/− mice showed an even more severe PAH phenotype. Further molecular investigation revealed the expression of a putative, alternatively primed IL-1R1 transcript expressed within the lungs but not aorta of ApoE−/−/IL-1R1−/− mice. Treatment of ApoE−/− and ApoE−/−/IL-1R1−/− mice with IL-1-receptor antagonist prevented progression of the PAH phenotype in both strains. Blocking IL-1 signaling may have beneficial effects in treating PAH, and alternative IL-1-receptor signaling in the lung may be important in driving PAH pathogenesis.

Related Topics
Health Sciences Medicine and Dentistry Cardiology and Cardiovascular Medicine
Authors
, , , , , , , , , ,