Article ID Journal Published Year Pages File Type
59669 Chinese Journal of Catalysis 2016 10 Pages PDF
Abstract

Al2O3-CeO2 supports containing 1-10 wt% Ce were prepared mechanochemically by milling aluminum and/or cerium nitrates with NH4HCO3. Heteropolymolybdate, (NH4)4NiMo6O24, was used as the precursor of the Ni and Mo to prepare NiMo6/Al2O3-CeO2 components in catalysts by impregnation method. The physicochemical properties of the catalysts were determined using chemical analysis, X-ray diffraction, temperature-programmed H2 reduction, temperature-programmed NH3 desorption, X-ray photoelectron spectroscopy (XPS), and the Brunauer-Emmett-Teller method. The catalyst acidity decreased with increasing Ce concentration in the support. XPS showed that the NiS/MoS ratio decreased two-fold for the Ce-modified alumina support. NiMo6/Al2O3, which had the highest acidity, showed the highest activity in hydrodesulfurization of 1-benzothiophene (normalized per weight of catalyst). The concentration of surface MoOxSy species (which is equal to the concentration of Mo5+) gradually decreased to zero for catalysts with Ce concentrations ( 10 wt%. However, the activities of all the catalysts prepared mechanochemically from Al2O3 and Al2O3-CeO2 supports significantly exceeded that of a reference NiMo6/Al2O3 catalyst prepared by impregnation method using the same precursor and with the same composition.

Graphical AbstractNiMo catalysts synthesized over the mechanochemically prepared CeO2-Al2O3 supports (CeO2 content less than 10 wt%) showed high activity in hydrodesulfurization (HDS) of 1-benzothiophene due to high acidity and concentration of the surface MoOxSy species.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , , ,