Article ID Journal Published Year Pages File Type
598987 Colloids and Surfaces B: Biointerfaces 2016 9 Pages PDF
Abstract

•Nanorough titanium surfaces were produced with physical vapor deposition.•Microbial adhesion was reduced up to 55.6% on the nanorough titanium.•Direct insight into the microbe-titanium- interface is given using FIB-SEM.•Initial microbial adhesion on nanorough surfaces is controlled via nano adhesion points.•Late microbial adhesion on nanorough surfaces is controlled by the attachment area.

Microbial adhesion to natural and synthetic materials surfaces is a key issue e.g. in food industry, sewage treatment and most importantly in the biomedical field. The current development and progress in nanoscale structuring of materials surfaces to control microbial adhesion requires an advanced understanding of the microbe-material-interaction. This study aimed to investigate the nanostructure of the microbe-material-interface and link it to microbial adhesion kinetics as function of titanium surface nanoroughness to gain new insight into controlling microbial adhesion via materials’ surface nanoroughness. Adhesion of Escherichia coli and Staphylococcus aureus was statistically significantly reduced (p ≤ 0.05) by 55.6 % and 40.5 %, respectively, on physical vapor deposited titanium thin films with a nanoroughness of 6 nm and the lowest surface peak density compared to 2 nm with the highest surface peak density. Cross-sectioning of the microbial cells with a focused ion beam (FIB) and SEM imaging provided for the first time direct insight into the titanium-microbe-interface. High resolution SEM micrographs gave evidence that the surface peaks are the loci of initial contact between the microbial cells and the material’s surface. In a qualitative model we propose that the initial microbial adhesion on nanorough surfaces is controlled by the titanium surface peak density via nano adhesion points. This new understanding will help towards the design of materials surfaces for controlling microbial adhesion.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , , , ,