Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
599478 | Colloids and Surfaces B: Biointerfaces | 2014 | 7 Pages |
•AgNPs disrupted EGF signal transduction through a two-phase response.•Kinetic dissolution of AgNPs is a function of environmental and time factors.•Ag ion presence induced an early loss of EGF signaling efficiency.•Sustained stress through particle dissolution increased EGF signaling.•Internalized AgNPs modified cell behavior after excess particle removal.
Due to their distinctive physiochemical properties, including a robust antibacterial activity and plasmonic capability, hundreds of consumer and medical products contain colloidal silver nanoparticles (AgNPs). However, even at sub-toxic dosages, AgNPs are able to disrupt cell functionality, through a yet unknown mechanism. Moreover, internalized AgNPs have the potential to prolong this disruption, even after the removal of excess particles. In the present study, we evaluated the impact, mechanism of action, and continual effects of 50 nm AgNP exposure on epidermal growth factor (EGF) signal transduction within a human keratinocyte (HaCaT) cell line. After AgNP expose, EGF signaling was initially obstructed due to the dissolution of particles into silver ions. However, at longer durations, the internalized AgNPs increased EGF signaling activity. This latter behavior correlated to sustained HaCaT stress, believed to be maintained through the continual dissolution of internalized AgNPs. This study raises concerns that even after exposure ceases, the retained nanomaterials are capable of acting as a slow-release mechanism for metallic ions; continually stressing and modifying normal cellular functionality.
Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide