Article ID Journal Published Year Pages File Type
6001322 Thrombosis Research 2015 8 Pages PDF
Abstract

rVIII-SingleChain is a novel recombinant single-chain factor VIII (FVIII) construct, comprising covalently bonded heavy and light chains. Post-translational modifications of FVIII affect physicochemical parameters, including hydrophobicity and charge. The most relevant post-translational modifications of FVIII products are N-glycosylation of asparagine residues and tyrosine sulphations. Here, the physicochemical properties, thrombin cleavage products and post-translational modifications of rVIII-SingleChain were investigated and compared against commercially available recombinant FVIII (rFVIII) products with a predominant two-chain structure (B-domain deleted rFVIII and full-length rFVIII). rVIII-SingleChain was expressed in Chinese hamster ovary (CHO) cells and purified by chromatographic methods. Physicochemical properties of rVIII-SingleChain or thrombin-derived cleavage products were assessed using size-exclusion chromatography, reversed-phase chromatography and sodium dodecyl sulphate polyacrylamide gel electrophoresis. Analysis of the respective carbohydrate structures was performed after release of N-glycans by PNGase F followed by fluorescence labelling and high-performance liquid chromatography. Proteolysis by trypsin generated the corresponding peptides, which were analysed for sulphated tyrosines by liquid chromatography-electrospray ionisation time of flight-mass spectrometry. rVIII-SingleChain was shown to be of high purity and homogeneity, and presented a well-defined single-chain molecule with predominant β-sheet conformation. The coagulation-relevant thrombin-activation products of rVIII-SingleChain were comparable with those obtained by activation of commercially available rFVIII products. rVIII-SingleChain post-translational modifications were similar to other CHO cell-derived rFVIII products for N-glycopattern and tyrosine sulphation. In conclusion, rVIII-SingleChain is of high homogeneity and purity, and provides an expected cleavage pattern on activation, setting the basis for optimal efficacy in the patient.

Related Topics
Health Sciences Medicine and Dentistry Cardiology and Cardiovascular Medicine
Authors
, , , , , , ,