Article ID Journal Published Year Pages File Type
600597 Colloids and Surfaces B: Biointerfaces 2012 11 Pages PDF
Abstract

Polyplex particles formed with plasmid DNA (pDNA) and Pluronic P85-block-poly{N-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} (P85-b-P[Asp(DET)]) demonstrated highly effective transfection ability compared to PEG-based block cationomer, PEG-b-P[Asp(DET)]. Ternary polyplexes comprising PEG-b-P[Asp(DET)], poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)-b-P[Asp(DET)] (P(EPE)-b-P[Asp(DET)]) used as an analog of P85-b-P[Asp(DET)], and pDNA were prepared in this work aiming at maintaining adequate transfection efficiency while solving the stability issues of the P85-b-P[Asp(DET)] polyplexes. Furthermore, a bioreducible P(EPE)-SS-P[Asp(DET)] possessing a redox potential-sensitive disulfide linkage between the P(EPE) polymer and the cationic block was used as a substitute for P(EPE)-b-P[Asp(DET)] during ternary complex formation to investigate whether the transfection ability of the ternary polyplex system could be enhanced by triggered release of P(EPE) polymers from the polyplexes. The ternary complexes showed significant improvement in terms of stability against salt-induced aggregation compared to binary complexes, although the gene delivery ability dropped with the amount of PEG-b-P[Asp(DET)] used for complexation. By manipulating the difference in redox potential between the extracellular and intracellular environments, the reducible ternary complexes achieved higher transfection compared to the non-reducible polyplexes; moreover, the reducible polyplexes exhibited comparable stability to the non-reducible ones. These results suggest that reducible ternary complexes could provide satisfactory transfection efficiency without comprising the colloidal stability of the particles.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slideHighlights► Ternary polyionic complexes with surface covered with different ratios of PEG and P(EPE) polymers were prepared. ► Colloidal stability of ternary complexes increased with the amount of PEG-based cationomers used; however, the transfection efficiency dropped at the same time. ► Reducible ternary complexes with triggered-release of P(EPE) from the particles showed similar stability compared to the non-reducible polyplexes but demonstrated higher transfection ability.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , ,