Article ID Journal Published Year Pages File Type
600859 Colloids and Surfaces B: Biointerfaces 2012 8 Pages PDF
Abstract

Magnetite nanoparticles (MNPs) were prepared by alkaline hydrolysis of Fe(II) and Fe(III) chlorides. Adsorption of polyacrylic acid (PAA) on MNPs was measured at pH = 6.5 ± 0.3 and I = 0.01 M (NaCl) to find the optimal PAA amount for MNP stabilization under physiological conditions. We detected an H-bond formation between magnetite surface groups and PAA by ATR-FTIR measurements, but bonds of metal ion–carboxylate complexes, generally cited in literature, were not identified at the given pH and ionic strength. The dependence of the electrokinetic potential and the aggregation state on the amount of added PAA at various pHs was measured by electrophoretic mobility and dynamic light-scattering methods. The electrokinetic potential of the naked MNPs was low at near physiological pH, but PAA adsorption overcharged the particles. Highly negatively charged, well-stabilized carboxylated MNPs formed via adsorption of PAA in an amount of approximately ten times of that necessary to compensate the original positive charge of the magnetite. Coagulation kinetics experiments revealed gradual enhancement of salt tolerance at physiological pH from ∼0.001 M at no added PAA up to ∼0.5 M at 1.12 mmol/g PAA. The PAA-coated MNPs exert no substantial effect on the proliferation of malignant (HeLa) or non-cancerous fibroblast cells (MRC-5) as determined by means of MTT assays.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slideHighlights► PAA coated MNPs are reproducibly synthesized as magnetic fluids for biomedical uses. ► PAA adsorbs on MNPs at pH ∼ 6.5 by H-bonding, not by complexation of FeOH sites. ► Five times more PAA is needed to stabilize MNPs than that to neutralize their charges. ► Enhanced stability and salt tolerance of MNPs require even higher excess of PAA. ► PAA coated MNPs are biocompatible with healthy and cancer cells.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , , , , ,