Article ID Journal Published Year Pages File Type
601095 Colloids and Surfaces B: Biointerfaces 2011 7 Pages PDF
Abstract

Thrombin, a multifunctional serine protease, has both procoagulant and anticoagulant functions in human blood. Thrombin has two electropositive exosites. One is the fibrinogen-binding site and the other is the heparin-binding site. Over the past decade, two thrombin-binding aptamers (15-mer and 29-mer) were reported by SELEX technique. Recently, many studies examined the interactions between the 15-mer aptamer and thrombin extensively, but the data on the difference of these two aptamers binding to thrombin are still lacking and worth investigating for fundamental understanding. In the present study, we combined conformational data from circular dichroism (CD), kinetics and thermodynamics information from surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) to compare the binding mechanism between the two aptamers with thrombin. Special attentions were paid to the formation of G-quadruplex and the effects of ions on the aptamer conformation on the binding and the kinetics discrimination between specific and nonspecific interactions of the binding. The results indicated reasonably that the 15-mer aptamer bound to fibrinogen-binding site of thrombin using a G-quadruplex structure and was dominated by electrostatic interactions, while the 29-mer aptamer bound to heparin-binding site thrombin using a duplex structure and was driven mainly by hydrophobic effects.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slideHighlights► We combined conformational, kinetics and thermodynamics information to compare the binding mechanism between thrombin with two aptamers. ► The 15-mer aptamer bound to fibrinogen-binding site of thrombin using a G-quadruplex structure and was dominated by electrostatic interactions. ► The 29-mer aptamer bound to heparin-binding site thrombin using a duplex structure and was driven mainly by hydrophobic effects.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , , , ,