Article ID Journal Published Year Pages File Type
6012496 Epilepsy & Behavior 2014 11 Pages PDF
Abstract
Melatonin is involved in the control of circadian and seasonal rhythmicity, possesses potent antioxidant activity, and exerts a neuroprotective and anticonvulsant effect. Spontaneously hypertensive rats (SHRs) are widely accepted as an experimental model of essential hypertension with hyperactivity, deficient sustained attention, and alterations in circadian autonomic profiles. The purpose of the present study was to determine whether melatonin treatment during epileptogenesis can prevent the deleterious consequences of status epilepticus (SE) in SHRs in the kainate (KA) model of temporal lobe of epilepsy (TLE). Spontaneous recurrent seizures (SRSs) were EEG- and video-recorded during and after the treatment protocol. Melatonin (10 mg/kg diluted in drinking water, 8 weeks) increased the seizure-latent period, decreased the frequency of SRSs, and attenuated the circadian rhythm of seizure activity in SHRs. However, melatonin was unable to affect the disturbed diurnal rhythms and behavioral changes associated with epilepsy, including the decreased anxiety level, depression, and impaired spatial memory. Melatonin reduced neuronal damage specifically in the CA1 area of the hippocampus and piriform cortex and decreased hippocampal serotonin (5-HT) levels both in control and epileptic SHRs. Although long-term melatonin treatment after SE shows a potential to attenuate seizure activity and neuronal loss, it is unable to restore epilepsy-associated behavioral abnormalities in SHRs.
Related Topics
Life Sciences Neuroscience Behavioral Neuroscience
Authors
, , , , , , , , , , , ,