Article ID Journal Published Year Pages File Type
601397 Colloids and Surfaces B: Biointerfaces 2010 8 Pages PDF
Abstract

We report the immobilization of a model enzyme, papain, within silica matrices by combining vesiclization of poly-l-lysine-b-polyglycine block copolypeptides with following silica mineralization. Our novel strategy utilizes block polypeptide vesicles to induce the condensation of orthosilicic acid while trapping an enzyme within and between vesicles. The polypeptide mediated silica-immobilized enzyme exhibits enhanced pH and thermal stability and reusability, comparing with the free and vesicle encapsulated enzyme. The enhanced enzymatic activity in the immobilized enzyme is due to the confinement of the enzyme in the polypeptide mediated silica matrices. Kinetic analysis shows that the enzyme functionality is determined by the structure and property of silica/polypeptide matrices. The proposed novel strategy provides an alternative route for the synthesis of a broad range of functional bionanocomposites entrapped within silica nanostructures.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , ,